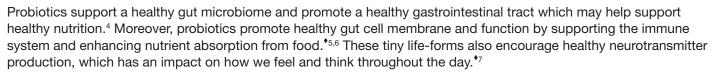


Essential 8's Probiotic


Probiotic Supplementation

Probiotic is a probiotic supplement made with a comprehensive seven-strain blend of gut-supporting microbial organisms (known as probiotics).* Probiotics support healthy gut flora to support a healthy gastrointestinal (GI) tract.* Moreover, probiotics may help support the immune system, promote healthy hormone functions, and even support healthy body mass.*

Probiotic contains some of the most embraced microbial strains for human wellness, these beneficial probiotics may:

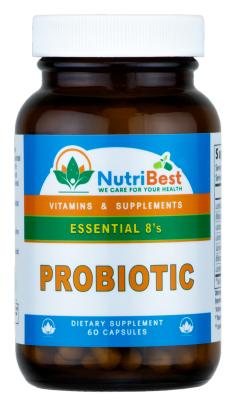
- Support a healthy gut microbiome^{*}
- Support a healthy inflammatory response
- Support immune function
- Support digestive function[†]

Probiotic contains 22 billion colony-forming units (CFU) of a potent seven-strain blend of probiotics per serving to promote gut health and overall wellness.*

Lactobacillus acidophilus & Lactobacillus rhamnosus

L. acidophilus is a beneficial lactic acid bacteria often used to treat lactose intolerance and general gut microbe imbalances; it is also necessary for synthesizing vitamin B9 (folate) within the body. *8

Similar to *L. acidophilus*, *L. rhamnosus* helps promote digestion of lactose by producing the lactase enzyme, as well as folate and vitamin B12 - two vitamins that are key for healthy nervous system function. ¹9


Bifidobacterium lactis & Bifidobacterium bifidum

B. lactis is a bacterium that readily resists bile salts and acidic conditions (meaning it is able to withstand the harsh digestive environment of the human gut).¹⁰ Like Lactobacilli, Bifidobacteria aid in the digestion of lactose and are critical for producing B vitamins, which serve many vital roles in the body.¹¹

In addition to vitamin synthesis, *B. bifidum* is widely used to normalize gut bacteria function.* It has been shown to significantly promote a healthy digestive system and stool consistency.* *B. bifidum* has a range of enzymes that help digest many different oligosaccharides (small-chain sugars), which in turn allows the body to break down otherwise indigestible nutrients.

Lactobacillus plantarum

L. plantarum promotes a healthy gastrointestinal tract environment and proper mineral absorption.* A well-controlled study in 24 healthy women showed that *L. plantarum* supplementation increased iron absorption by 80% when consumed with a meal containing high amounts of phytic acid (a compound that hinders iron absorption).¹³ It is surmised this effect is due to *L. plantarum* exposing iron molecules to the intestinal lining for an extended duration and therefore promoting intestinal absorption.*

Other significant findings suggest L. plantarum can help support healthy immune function.14

Lactobacillus paracasei

L. paracasei is an integral bacterium in human flora and is particularly important for digesting oligosaccharides and supporting immune function. •15,16

Saccharomyces boulardii

Saccharomyces boulardii is a nonpathogenic yeast strain. A contemporary meta-analysis contends that Saccharomyces boulardii supports gastrointestinal integrity by promoting healthy inflammatory responses in the intestines and colon of humans. *17

Supplement Facts

Form: 60 Capsules Servings Size: 1 Capsule

Ingredients:	Amount	%DV
Lactobacillus paracasei UALpc-04 ^{™††}	5.926 Billion CFU [†]	
<i>Bifidobacterium lactis</i> UABla-12 ^{™††}	5.185 Billion CFU [†]	
Lactobacillus acidophilus UALa-01™††	4.444 Billion CFU [†]	
Lactobacillus plantarum UALp-05™††	2.963 Billion CFU [†]	
Saccharomyces boulardii Lynside®†††	2 Billion CFU [†]	
Bifidobacterium bifidum UABb-10™††	0.741 Billion CFU [†]	
Lactobacillus rhamnosus UALr-06™††	0.741 Billion CFU [†]	

Other Ingredients: Microcrystalline cellulose, digestive resistant capsule (hypromellose, gellan gum), vegetable magnesium stearate.

- † At time of manufacture.

by your healthcare practitioner.

Caution: If you are pregnant, nursing, or taking medication, consult your healthcare practitioner before use. Keep out of reach of children.

- References:
 1. Turnbaugh, P. J., & Gordon, J. I. (2009). The core gut microbiome, energy balance and obesity. The Journal of physiology, 587(17), 4153-4158.
 2. Evans, J. M., Morris, L. S., & Marchesi, J. R. (2013). The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology, 218(3), R37-R47.
 3. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474(7351), 327-336.
 4. Fijan, S. (2014). Microorganisms with claimed probiotic properties: an overview of recent literature. International journal of environmental research and public health, 11(5), 4745-4767.
 5. Fooks, L. J., & Gibson, G. R. (2002). Probiotics as modulators of the gut flora. British Journal of Nutrition, 88(S1), s39-s49.
 6. Gareau, M. G. Sherman, P. M. & Walker, W. A. (2010). Probiotics and the cut microbiotic in
- Gareau, M. G., Sherman, P. M., & Walker, W. A. (2010). Probiotics and the gut microbiota in intestinal health and disease. *Nature Reviews Gastroenterology and Hepatology*, 7(9), 503-514.
 O'mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. *Behavioural brain research*, 277, 32-48.
- Rossi, M., Amaretti, A., & Raimondi, S. (2011). Folate production by probiotic bacteria Nutrients, 3(1), 118-134.
- Malcolm W. Hickey, Alan J. Hillier, G. Richard Jago (1986). Transport and Metabolism of Lactose, Glucose, and Galactose in Homofermentative Lactobacilli. Appl Environ Microbiol.; 51(4): 825–831.
- Hyronimus, B., Le Marrec, C., Sassi, A. H., & Deschamps, A. (2000). Acid and bile tolerance of spore-forming lactic acid bacteria. *International journal of food microbiology*, 61(2), 193-197.
- Karina Pokusaeva, Gerald F. Fitzgerald, Douwe van Sinderen (2011). Carbohydrate metabolism in Bifidobacteria. Genes Nutr.; 6(3): 285–306.
- Whorwell, P. J., Altringer, L., Morel, J., Bond, Y., Charbonneau, D., O'mahony, L., ... & Quigley, E. M. (2006). Efficacy of an encapsulated probiotic Bifidobacterium bifidum 35624 in women with irritable bowel syndrome. The American journal of gastroenterology, 101(7), 1581-1590.
 Bering S. et al., (2006). 'A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age'. British Journal of Nutrition, 96:80-85.

- Cunningham-Rundles S. et al., (2000), 'Probiotics and immune response'. Am J Gastroenterol., 95:S22-25.
- Makras, L., Van Acker, G., & De Vuyst, L. (2005). Lactobacillus paracasei subsp. paracasei 8700: 2 degrades inulin-type fructans exhibiting different degrees of polymerization. Applied and environmental microbiology, 71(11), 6531-6537.
 Smokvina, T., Wels, M., Polka, J., Chervaux, C., Brisse, S., Boekhorst, J., ... & Siezen, R. J.
- (2013). Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS One, 8(7), e68731.
 McFarland, L. V. (2010). Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World journal of gastroenterology: WJG, 16(18), 2202.

NON-GMO

PRODUCED IN A cGMP FACILITY

GLUTEN-FREE DAIRY-FREE

VEGETARIAN

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.